Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus.

نویسندگان

  • P López-García
  • P Forterre
چکیده

Plasmid topology varies transiently in hyperthermophilic archaea during thermal stress. As in mesophilic bacteria, DNA linking number (Lk) increases during heat shock and decreases during cold shock. Despite this correspondence, plasmid DNA topology and proteins presumably involved in DNA topological control in each case are different. Plasmid DNA in hyperthermophilic archaea is found in a topological form from relaxed to positively supercoiled in contrast to the negatively supercoiled state typical of bacteria, eukaryotes and mesophilic archaea. We have analysed the regulation of DNA topological changes during thermal stress in Sulfolobus islandicus (kingdom Crenarchaeota), which harbours two plasmids, pRN1 and pRN2. In parallel with plasmid topological variations, we analysed levels of reverse gyrase, topoisomerase VI (Topo VI) and the small DNA-binding protein Sis7, as well as topoisomerase activities in crude extracts during heat shock from 80 degrees C to 85-87 degrees C, and cold shock from 80 degrees C to 65 degrees C. Quantitative changes in reverse gyrase, Topo VI and Sis7 were not significant. In support of this, inhibition of protein synthesis in S. islandicus during shocks did not alter plasmid topological dynamics, suggesting that an increase in topoisomerase levels is not needed for control of DNA topology during thermal stress. A reverse gyrase activity was detected in crude extracts, which was strongly dependent on the assay temperature. It was inhibited at 65 degrees C, but was greatly enhanced at 85 degrees C. However, the intrinsic reverse gyrase activity did not vary with heat or cold shock. These results suggest that the control of DNA topology during stress in Sulfolobus relies primarily on the physical effect of temperature on topoisomerase activities and on the geometry of DNA itself. Additionally, we have detected an enhanced thermoresistance of reverse gyrase activities in cultures subject to prolonged heat shock (but not cold shock). This acquired thermotolerance at the enzymatic level is abolished when cultures are treated with puromycin, suggesting a requirement for protein synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro DNA binding of the archaeal protein Sso7d induces negative supercoiling at temperatures typical for thermophilic growth.

The topological state of DNA in hyperthermophilic archaea appears to correspond to a linking excess in comparison with DNA in mesophilic organisms. Since DNA binding proteins often contribute to the control of DNA topology by affecting DNA geometry in the presence of DNA topoisomerases, we tested whether the histone-like protein Sso7d from the hyperthermophilic archaeon Sulfolobus solfataricus ...

متن کامل

DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles.

During heat shock and cold shock, plasmid DNA supercoiling changes transiently both in mesophilic bacteria and in hyperthermophilic archaea, despite a different overall topology (negative supercoiling versus relaxation to positive supercoiling). Transient changes in DNA supercoiling might be essential to generate the stress response, but they could also be a consequence of the physical effects ...

متن کامل

Selective degradation of reverse gyrase and DNA fragmentation induced by alkylating agent in the archaeon Sulfolobus solfataricus

Reverse gyrase is a peculiar DNA topoisomerase, specific of hyperthermophilic Archaea and Bacteria, which has the unique ability of introducing positive supercoiling into DNA molecules. Although the function of the enzyme has not been established directly, it has been suggested to be involved in DNA protection and repair. We show here that the enzyme is degraded after treatment of Sulfolobus so...

متن کامل

Enhanced thermotolerance and temperature-induced changes in protein composition in the hyperthermophilic archaeon ES4.

The hyperthermophilic archaeon ES4, a heterotrophic sulfur reducer isolated from a deep-sea hydrothermal vent, is capable of protecting itself from thermal stress at temperatures above its optimum for growth. The thermotolerance of ES4 was determined by exposing log-phase cells to various lethal high temperatures. When ES4 was shifted from 95 to 102 degrees C, it displayed recovery from an expo...

متن کامل

Effect of thermal shocks on survival and safety responses of oriental river prawn, Macrobrachium nipponense (De Haan, 1849)

This study was performed to determine the severity of hormonal changes and the immune system of oriental river prawn (Macrobrachium nipponense) in the face of thermal stresses (heat and cold). For this purpose, 80 pieces of prawn with an average weight of 1.5 ±0.3g were prepared from Anzali wetland and in the laboratory after a rest period, under thermal stresses (from 15 ° C to 22 ° C) and col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular microbiology

دوره 33 4  شماره 

صفحات  -

تاریخ انتشار 1999